

IEC 63601

Edition 1.0 2026-02

INTERNATIONAL STANDARD

Guideline for evaluating bias temperature instability of silicon carbide metal-oxide-semiconductor devices for power electronic conversion

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Considerations for bias-temperature instability (BTI) stress methods and shift evaluation for SiC-based MOS devices	11
4.1 General	11
4.2 Mechanisms of V_T shift and hysteresis resulting from PBTI/NBTI stress	12
4.3 Threshold voltage and hysteresis measurements	12
4.3.1 Comments concerning threshold voltage (V_T) measurements	12
4.3.2 V_T measurement and conditioning	15
4.3.3 Threshold hysteresis (V_T^{HYST}) and fast transient effects	16
4.4 Typical PBTI/NBTI stress considerations	17
4.5 Lifetime prediction models and failure determination	18
4.6 Overview of BTI methods	20
5 General Measure Stress Measure (MSM) method	21
6 Fast Drain Current (FDC) method	23
7 Gate sweep MSM method	24
8 Conditioning Method	26
9 Hysteresis method (or double sense method)	27
10 Triple sense method	28
Annex A (informative) Supplemental sampling guidelines	30
Annex B (informative) Examples demonstrating V_T shift during BTI measurements	31
B.1 General	31
B.2 Single V_T sense measurements	31
B.3 Double V_T sense measurements (hysteresis method)	33
B.4 Triple V_T sense measurements (V_T sense + hysteresis)	35
Annex C (informative) Examples demonstrating V_T shift during gate switching	37
Annex D (informative) Lifetime models	39
Annex E (informative) General introduction to threshold voltage (V_T) stability and SiC-based MOS devices	41
Bibliography	43
Figure 1 – Proposed sweep methods for NBTI and PBTI for MOSFETs	14
Figure 2 – Proposed sweep methods for NBTI and PBTI for gated diode configuration	14
Figure 3 – Circuit diagram for the V_T measurement using the gated-diode configuration	15
Figure 4 – Sweep proposal and I_D vs V_{GS} response for the fixed V_{GS} method	15
Figure 5 – Hysteresis measurement sequence, measuring V_T using the gated diode V_T sense method	16
Figure 6 – Hysteresis measurement sequence using gate sweeps	17

Figure 7 – The absolute value of NBTI V_T shift	19
Figure 8 – The PBTI V_T shift as a function of time, fit to a power law for the longer time shift data	19
Figure 9 – MSM PBTI stress and measure waveforms	22
Figure 10 – MSM NBTI stress and measure waveforms	23
Figure 11 – Fast-drain current waveforms for PBTI stress	23
Figure 12 – Fast-drain current waveforms for NBTI stress	24
Figure 13 – Gate-sweep MSM method waveforms for PBTI	25
Figure 14 – Gate-sweep MSM method waveforms for NBTI	25
Figure 15 – Conditioning method waveforms for PBTI	26
Figure 16 – Conditioning method waveforms for NBTI	27
Figure 17 – Conditioning method waveforms for NBTI	27
Figure 18 – BTI hysteresis method using the full hysteresis measurement as the V_T sense step after each V_{GS} stress period	28
Figure 19 – BTI triple sense method using a first V_T sense followed by a hysteresis measurement (three V_T measurements per sense step)	29
Figure B.1 – Example showing the measured V_T over time during PBTI using a single V_T sense	32
Figure B.2 – Example showing the measured V_T over time during NBTI using a single V_T sense	32
Figure B.3 – Example showing the effect of a conditioning pulse on the measured V_T over time during NBTI using a single V_T sense	33
Figure B.4 – Example showing the two V_T versus time curves obtained during the PBTI hysteresis method	34
Figure B.5 – Example showing the two V_T versus time curves obtained during the NBTI hysteresis method	34
Figure B.6 – Example showing the three V_T versus time curves obtained during the PBTI triple sense method	35
Figure B.7 – Example showing the three V_T versus time curves obtained during the NBTI triple sense method	36
Figure C.1 – V_T evolution over time	38
Table 1 – BTI methods described in this document	21

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Guideline for evaluating bias temperature instability of silicon carbide metal-oxide-semiconductor devices for power electronic conversion**FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63601 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

It is based upon JEDEC JEP184: *Guideline for Evaluating Bias Temperature Instability of Silicon Carbide Metal-Oxide Semiconductor Devices for Power Electronic Conversion*. It is used with permission of the copyright holder, JEDEC Solid State Technology Association. It was submitted as a Fast Track document.

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2986/FDIS	47/2994/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

The structure and editorial rules used in this publication reflect the practice of the organization which submitted it.

This document was developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

The objective of this document is to provide useful definitions and procedures for characterizing the threshold voltage instability of SiC-based power electronic conversion semiconductor (PECS) devices having a gate dielectric region biased to turn devices on and off. This typically refers to MOS (Metal-Oxide-Semiconductor) devices such as field-effect transistors (MOSFETs, Metal-Oxide-Semiconductor Field Effect Transistors)) and insulated-gate bipolar transistors (IGBTs). For simplicity reasons, in the following paragraphs the terms MOSFET or MOS device are used only, while the content is valid for IGBT's as well. Monitoring of threshold-voltage instability in MOS devices is commonly referred to by the term "bias-temperature instability" (BTI), while the applied stress to check for instability is usually referred to as "bias-temperature-stress" (BTS). The terms BTI, BTS, and threshold-voltage instability will be used throughout this document.

1 Scope

The scope of this document covers SiC-based PECS devices having a gate dielectric region biased to turn devices on and off. This typically refers to MOS devices such as MOSFETs and IGBTs. In this document, only NMOS (N-type MOS) devices are discussed as these are dominant for power device applications; however, the procedures apply to PMOS (P-type MOS) devices as well.

This document does not define device failure criteria, acceptable use conditions or acceptable lifetime targets. That is up to the device manufacturers and users. However, it provides stress procedures such that the threshold voltage stability over time as affected by gate bias and temperature can be demonstrated and evaluated.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60747-8:2010, *Semiconductor devices - Discrete devices - Part 8: Field-effect transistors*

IEC 63505, *Guidelines for measuring the threshold voltage (V_T) of SiC MOSFETs*

Bibliography

- [1] IEC 60747-8:2010, *Semiconductor devices - Discrete devices - Part 8: Field-effect transistors*
- [2] J.W. McPherson, *Reliability Physics and Engineering*, Springer New York 2010
- [3] J.H. Stathis, S. Zafar, “*The negative bias temperature instability in MOS devices: A review*”, *Microelectronics Reliability* Vol. 46, 2006, pp. 270–286
- [4] Dieter K. Schroder, “*Negative bias temperature instability: what do we understand?*”, *Microelectronics Reliability* Vol. 47, 2007, pp. 841–852
- [5] James H. Stathis, Souvik Mahapatra, Tibor Grasser, “*Controversial issues in negative bias temperature instability*”, *Microelectronics Reliability* Vol. 81, 2018, pp. 244–251
- [6] JEDEC JEP001A, *Foundry Process Qualification Guidelines*
- [7] JEDEC JEP122H, *Failure Mechanisms and Models for Silicon Semiconductor Devices*
- [8] JEDEC JESD22-A108F, *Temperature, Bias, and Operating Life*
- [9] JEDEC JESD47J.01, *Stress-Test-Driven Qualification of Integrated Circuits*
- [10] JEDEC JESD90, *A Procedure for Measuring P-Channel MOSFET Negative Bias Temperature Instabilities*
- [11] JEDEC JESD91A, *Method for Developing Acceleration Models for Electronic Component Failure Mechanisms*
- [12] JEDEC JESD241, *Procedure for Wafer-level dc Characterization of Bias Temperature Instabilities*
- [13] IEC 63275-1, *Semiconductor devices - Reliability test method for silicon carbide discrete metal-oxide semiconductor field effect transistors - Part 1: Test method for bias temperature instability*
- [14] Thomas Aichinger, Gerald Rescher, Gregor Pobegen, “*Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs*”, *Microelectronics Reliability* Vol. 80, 2018, pp. 68–78
- [15] Daniel B. Habersat, Aivars J. Lelis, Ronald Green, “*Measurement considerations for evaluating BTI effects in SiC MOSFETs*”, *Microelectronics Reliability* Vol. 81, 2018, pp. 121–126
- [16] Katja Puschkarsky, Tibor Grasser, Thomas Aichinger, Wolfgang Gustin and Hans Reisinger, “*Understanding and Modeling Transient Threshold Voltage Instabilities in SiC MOSFETs*”, *International Reliability and Physics Symposium IRPS*, 2018, 3B-5.1-5.10
- [17] Aivars J. Lelis, Ronald Green, and Daniel B. Habersat, “*SiC MOSFET Reliability and Implications for Qualification Testing*”, *International Reliability and Physics Symposium IRPS*, 2017, 2A-4.1-4.4

- [18] Aivars J. Lelis, Daniel Habersat, Ronald Green, Aderinto Ogunniyi, Moshe Gurfinkel, John Suehle, and Neil Goldsman, “*Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements*”, *IEEE Trans. Electron Dev.*, Vol. 55, 2008, pp. 1835-1840
- [19] JEDEC JESD92, *Procedure for Characterizing Time-Dependent Dielectric Breakdown of Ultra-Thin Gate Dielectrics*
